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QUANTIZATION IN STANDARD MODE-SELECTING
ELEMENTS OF COMPUTER-SYNTHESIZED OPTICS

M. A. GoLuB

Abstract—A theoretical investigation is carried out into the effect of quantization of complex transmittance
on the performance of optical elements that form the transverse-mode structure of coherent illumination.
A quantization model is constructed for the synthesis of optical elements by the methods of computer
optics technology using various methods of coding with a carrier. Estimates are derived for the power
efficiency of the optical elements subjected to quantization. To maintain accuracy of transverse-mode
structure formulation, performance criteria are introduced and related to the parameters of quantization
and the physical parameters of the light beam. An algorithm is developed to correct the perturbations
due to quantization in the synthesis of mode-affecting elements on a computer. For the Gauss—Hermite
modes, analytical expressions are derived and numerical estimates given for the power efficiency and
performance in the formulation of a transverse-mode structure.

In computer-designed optics, the properties of mode affecting elements are governed to a certain
extent by the quantization of their transmittance or reflection function [1-3]. Estimates of
quantization errors in analysis of the transverse mode structure of coherent radiation were first
reported by Golub et al. [1, 2].

This paper presents a theoretical investigation into the structure of light beams emerging from
discrete mode-sensitive elements. It gives estimates of power efficiency in quantization and of
accuracy in providing a desired transverse-mode structure.

TRANSFORMATION OF LIGHT BEAMS UNDER QUANTIZATION OF TRANSMITTANCE

The desired standard light beam with complex amplitude

(X)= Z gpll//pl(x)’ XGG, (1)
p.lel;,
Ep =/l explib,), (2)

containing L > 1 transverse modes ¥ ,;(x) with transverse indices (p, /) I;, and having powers Kot
and phases b,, may be obtained by passing an illuminating beam E(x) through a complex spatial
filter with the transmittance

W(x) = {(x)/E(x), €)

where I, is the set of L double indices (p, I), and x = (x, y) are Cartesian coordinates in a section
plane G of the beam.
The complex transmittance function

e o(52)
Winax = max [W(x)}, ©)
xeG

treated in computer optics, satisfies the condition |['(x)| < 1. It is obtained by coding in some way
f the function (3). The method of coding is selected such that in the first-order diffraction at an
angle corresponding to the spatial frequency v the field y*)

y(x) = c&(x) exp(i2mvX), ¢ = const. (6)
is reconstructed proportional to I'(x). For this component I''*), the transmittance I'(x) corresponding
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to the first order diffraction must satisfy the relation

W(x)

max

Mx)=a exp (i2nvx), N

where
a=cWya. (®)

At v =0 the first order of diffraction becomes the zero order. Notice that the coefficient a is
defined by the method of coding f only. It can be demonstrated, for example, that the amplitude
and phase elements of mode sensitive optics with a carrier may be described by the same formulae
as amplitude and phase diffraction gratings, respectively,

AA
a=p T’ ©)
am 11<*”;“ B), (10)

where AE€[0, 1] and ¢, €[0, 7] are the amplitude passband and phase shift of the recording
medium, usually ¢, = 7, and [0, 1] is the modulation depth.

The transmittance function I'(x) is implemented by means of a discrete photomask. We assume
that the mask is prepared by a photoplotter with discrete positioning and two-dimensional sweep.
It provides N; x N, counts with uniformly exposed pixels of size 6 x 6 each. The domain G is
therefore a d, x d, rectangle with d, = N,é and d, = N,4.

The respective discrete transmittance function is piecewise linear and described by the relation [4]

Ny N2

F)= 3 ¥ Tun)tum(X), (11)
n=1m=1

where X, = (x,, J,,) is the centre of the pixel G,,, and

LomX) =1, for xeG,,,

(12)
=0, for x¢G,,.
From (7) and (11) it follows
o) =a 2™ exp(i2nvx), (13)
where
Ni Nz
W(X) = Z Z W(xnm)Xnm(x) exXp — i27rv(x - xnm)' (14)

n=t m=1
By virtue of (7) and (13) the function W (x) approximates the complex transmittance function W (x)

given by (3).
The field in the first order formed by a mode sensitive element may be represented in the form

§M(x) = E(x)I'Y(x) = cn(x) exp (i2nvx). (15)
The function
nx)= Y Eaulx) (16)
plelp

can be represented with the aid of (1) and (14) as
nx)= 3, Eu@ulx). (17

p.lels

This function differs from the standard beam &£(x) in that the orthonormal mode functions ¥ ,(x),
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(p, eI, are replaced by the perturbed mode functions

@p(x) = E(x) i i Y pi(Xam)

.o n=1lm=1 E(xnm)

Xum(X) exp[ —i27v(x —X,,)}; (P, D€l (18)

PERTURBATION OF MODE FUNCTIONS UNDER DISCRETIZATION

We shall interpret [5] the functions ¢,(x), (p, l)e I, as the result of the perturbation
hpl(x) = (ppl(x) - l//pl(x)’ D> IEIL (19)

acting on the orthonormal mode functions ¥ ,(x), (p, [)eI,. The perturbations are caused by the
discretization procedure and depend on the method used in coding the mode elements of computer-
synthesized optics.

To investigate the mode structure of the beam subjected to discretization we introduce the matrix
elements

Hyppr = f (W o (x) A2, 20)
G

where the asterisk denotes the complex conjugate.
The perturbed mode functions are represented via the orthonormal functions by the formula

PuX) =Y u(X)+ Y, HpprVpr(x), (21)
p.l
where the sum is taken over all p’=0,1,2,..., and I'=0, 1,2, .... Accordingly, the field n(x)
given by (17) may be represented in the form

n(x) =Y 1 (%), (22)
p.l

where

npl = épl + Z H;’l’plip’l’ for (p’ l)EIL’

(p’, el

= 2 Hypulpr, for (p,)¢1y.

(', el

(23)

The modes ¥ ,,(x), (p, )€ I, necessary to construct the standard £(x) given by Eq. (1), constitute
merely the component

nx)=Pun(x)="3 np(x) (24)

(p.helL

of the field 5(x). Here P, is the projecting operator on to the base functions ¥, (p, )eI,. For
convenience we introduce L-dimensional vectors

E = (p,Del) and Ho=(n,:p,lely),
and the L x L matrices
Ep=[0,p0u: (p,Del; (p',1)elL],
Hy=[Hpp: (p, Dely; (p', el,],
o, =E +H, 25)

where d,, is the Kronecker delta.
In vector notation the formula (23) becomes

H, = ZEL = (EL + H:)EL’ (26)

where the asterisk denotes the Hermitian conjugate. In what follows we denote the scalar product
as (-, -) and use the symbol || for vector norms.

€0 2:1-C
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POWER EFFICIENCY UNDER DISCRETIZATION

If a mode affecting optical element is illuminated by the incident light
&= f |E(x)|? d2x 7N
G

then the beam %V(x) formed in the first order of diffraction contains both the desired modes
y(x) = PV (x) = cn(x) exp (i27vx) (28)

and undesirable modes of other orders. The intensity of the desired beam, ¢, 4, i.¢., used for generating
the required modes ¥ ,;, with (p, l)e Iy, is defined as

€14 =j hE ) d2x = czf I ()} d*x
G G

= c*(Hy, Hy) = ¢*(EL — R (EL, EL)), (29)
where
—R, =0, —E, =H; + Hf + H H}. 30)
The efficiency in terms of the incident beam intensity (29) will be estimated as
2
& ¢ -
~f=—(E.— RyEL Ey)). (31)

For L =1 when the standard beam contains only one transverse mode &, ,,(x), Eq. (31) takes
the form

era _ eIl

& &

11+ Hyppl* (32)

where the double index “pl” relates to the quantities of the single-mode beam. Conversely, when
the class of all standard beams £(1) containing exactly L modes is considered, one may derive an
estimate with the aid of quadratic forms [6]

c? = 12 f1d c =2
= [1 = AnaxROJIES < —< % [1 = Anin(RIIELI, (33)
where A.,,(R;) and A,,,(R,) are the least and largest eigenvalues of the self-adjoint matrix R;.
Note that the bounds of this estimate are achieved in varying E;.

In the absence of discretization H, = R; =0 and Eq. (32) reduces to

2

€ c

B = — 15,7 (34)
& i

and the inequality (33) becomes

£ c?

AT E. (35)
& &

Thus, discretization of mode-affecting optical elements reduces the energy efficiency
[1 — Apin(RL)] ™! to [1 — Apay(R.)] ™ fold owing to the diffraction scattering of the light beam into
higher diffraction orders, including the (1 + 2ReH,,;,; + |[Hy,1*) ™! fold reduction at L = 1.

The higher order modes of the beam 5 carry away the intensity

1n = f 00 = 900 d2x
G

= J PO )2 d>x — &y,
G
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In view of (15), (17) and (29) we have
eyp=c? J [n(x)1>d*x — ;4
G

=c*(R,— Qu)E.EL), (36)

where

Qr=1Qupr: (p, Del;p', I'¢l],

Qpipr = — f Pr(X)@ 1 (x) d?x + 6,0, . (37)
G

EFFECT OF DISCRETIZATION ON TRANSVERSE MODE STRUCTURE

A discrete mode-affecting optical element synthesized by the methods of computer optics
technology alters the distribution of power among the generated modes ¥ ,(x), (p,l)el;, and the
phases of the modes in the beam y{"(x) as compared with the required beam y*)(x) given by Eq.
(6). Because discretization reduces the power efficiency, it would be wise to compare the mode
structure of y{P(x) with that of 8y)(x), where 0 <8 < 1.

Imagine a virtual interferometer adjusted to the zero fringe for two interfering beams 6yV)(x)
and —y{M(x). The intensity fringe function in the interferogram is given by the formula

|6y (x) — ¥ (x)1?,
and the light beam of the difference interferogram

A% = f 16y V(x) — ¥ (x)I* d*x (38)
G

may be viewed as a performance measure in synthesizing the mode structure.
Making use of (6), (24) and the property of orthonormality of the mode functions, Eq. (38) can
be transformed to the form

Az =C2|05L"‘HL|2. (39)
This criterion A? takes on the minimal value

Alin=c*[(Hy, Hy) — 0%, EL)]

=c*([(1 - 6*)ELR.]EL, E)) (40)
at the optimal value of
H +Hf _ _
Re(Ey, Hy) 2 T
p=ReEuH)_ N 2 ) (41)
(B, Ep) Ep, Ep)

Estimating the quadratic forms (40) and (41) with self-adjoint matrices we arrive at the following
bounds for A? and 6:

(1 — 0% — A (RNIEL? S A2 < A1 = 07 — 2, (R)TIEL? (42)
%* H H*
1+ Am,x<u> <6<1+ /lmi,,< —AE_L.—i). @3)
2 2
The relative error of the transverse-mode structure formulation under discretization is
A* (EL—RJELE)

— 1. (44)
92 ('=‘L’ :L)

5=
f |6y (x)]* d*x
G
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Another measure of accuracy is the mean square error in mode beam generation, viz.
L A= f [y (x) — O d2x 45)
G
with the respective relative error

6= Ag/j [yV(x)]2 d?x
G

= J [S(x) — n(X)IZdZX/j &(x)|? d*x. (46)
G G
Equations (17), (1), (37) and (19) used together yield the estimate
In@) <82 = CEE) ) @), @)
B, EL)
where
QL=_(QL+HL+HD- (48)
For a single-mode beam i/, (L = 1), the above estimates take the form
0,,=1+Re H,,, (49)
A% =c}[1—6%+2Re Hyp + [Hypl*11E 4
= [cpléplll(lm lepl)z, (50)
551 = (Im lepl)z/(l + Re lepl)za (51)
5§l == (Qplpl +2Re lepl)' (52)

Note that for real values of H,, we have the equality

2
e c
s _ Colenl 2 53
&; i
that indicates that the factor 62 directly characterizes the reduction of power efficiency due to
discretization.

CORRECTION OF PERTURBATIONS DUE TO DISCRETIZATION IN STANDARD MODE
OPTICAL ELEMENTS

The operation of discretization gives rise to a number of undesirable modes, and therefore the
resultant mode structure differs from the desired one, the difference being given by criterion (44).
While there is no way to eliminate the higher order modes the distribution of power and phases
of the first modes with L > 2 may be improved. For this purpose, in the automatic design of mode
optical elements on a computer, we shall use predistorted coefficients Z; [5] instead of the standard
coefficients &, in Eq. (17). Then the coefficients H; (26) of the modes ¥, (p,l)el, in the
representation (24) give way to the coefficients

H =0z, (54)

characterizing the mode structure formed by elements of computer-synthesized optics.
If the pre-distortion is selected as [5]

[1]

=015, (55)
then

le = :‘L’

that is, the mode structure with respect to the first L modes will be exactly as required, although



Quantization in standard mode-selecting elements 35

the modes of higher orders are also present. Making use of the Neumann function for
IHLl <1 (56)

helps to represent the operation (55) rather accurately as the series
Zp) _ = 3 *)25
EP =2+ ) (—H})E,
r=0

or as the recurrence relations [5]

20 _ =
—L T L
57
EP=(—HPE{™V+E,; r=1,...,p. G
In performing the correction of order p, we get
AP = (E, + HHEP
P
= (EL+HZ) Z (—H: 'EL
r=0
=[EL+ (= 1PHE ' ]*E,. (58)
This equation replaces Eq. (26). Accordingly, Eq. (44) for the §? criterion takes on the form
8P = (E, — RP)E,, E,)/[6P]*(EL, BL), (59)
where
—R{ = (— LPLHE* '+ HEPH ']+ (HHPP Y, (60)

(1}
m

Ls

2 L)
. 61
EL Ep) ©D

It should be noted that at p =0 Eqs (57)-(61) become respectively the formulae (41)-(44), (30).

<Hi+l + Htp+1
P

6P =1+ (—1)

DISCRETIZATION IN OPTICAL ELEMENTS MATCHED WITH GAUSS-HERMITE MODES

For the orthonormal Gauss—Hermite modes [7] with complex amplitude

Yo, ) =¥ ,(xW(y), (62)
where
Yo(x)= EoJﬂ(@) exp( —Z;), (63)
EOp = l//max/zpp! ’ lpmax = (1/5)\/ 2/ ’ (64)
the derivative can be represented by the expression
1
Vo) =S VPV 100 = /P + 19,1 00], (65)

which follows from the recurrence relations of the Hermite polynomials H,(-) [8]. The relation
(65) and the orthogonality of the normalized functions (62) enable us to derive simple expressions
for the matrix elements of perturbations. For a plane incident wave (E(x) = 1), the formulae (A10)
and (A14) of the Appendix yield

ul/pr +/ (P + 1)+ 1))8,p — /PP + 1), -2 —/(P+ 1)P'Ops2 ]
+ 5pp’[(\/ﬁ + U+ DU+ D)oy — I+ 1), 50 — /(U + D)4 2,1},  (66)

1
Qplp’l’ - T]Vg
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Hypp = — Qpppr + [sinc(1/N,) Sinc(l/Nv) —1]0,,0n
i {sinc(1/N,)—cos(n/N,) . p ,
E { 21T/Nv Slnc(l/Nv)(sll’[\/p_‘sp+ 10 VP + lap— l,p’]

sin(t/N) LR 5L b, ST+ 1o J} (©7)

where sinc(¢) = sin(né)/né,
N,=0/d, (68)
N,=1/v,6, and N,=1/v4. (69)

The quantities N,, N, and N, indicate how many resolution elements may be placed within the
radius of the fundamental mode, and within the period of the carrier along the x axis and the y axis.
Consider an illustrative example. Suppose that an optical element of size d, =d, =d is to be
fabricated that has to form a single Gauss—Hermite mode with parameter ¢ from a plane wave of
illumination. Assume that the phase coding method will be used with the carrier v, = v, v, =0, and
the resolution ¢ is specified.
Observing that

Wnex! Ept < Ymax = (1/0)3/2/m (70)
we resort to the formulae (49-52), (32) and (66—69) to obtain the design relations (8 = 1) as follows:
62,y =2[1—sinc(1/N,} + (p+ 1+ 1)/6N?
~n?/3N2+(p+1+1)/6N2, (71)

Pt _ 1ol [Ginc(1/N,) — (p + 1+ 1)/6N2], (72)

&; i

Glpl - _1 I%<Zt£><gg>2 (73)
& 2 2 )\ d

is the energy efficiency of the mode element in the absence of quantization.

For § - 0 we have N, » o0 and N, — 0. For a specific 4 > 0, the leading terms in (71) and (72)
describe the quantization error for the carrier frequency, while the second terms give the error of
sampling of the mode function .. Tables 1 and 2 summarize the values for the performance criteria
(71) and (72).

As the order (p + 1) of mode y, increases, the power efficiency ¢, ,/¢; decreases and the mean
square deviation J] increases. Given an admissible drop of the power efficiency

where

X= |£1d,pl - 31p1|/81p1

and the maximum value of the root mean square deviation J, ,,,, we arrive at an estimate of the
maximum order of the mode, which may be recorded onto the fabricated optical element, namely,

(P + Dmax = min(py, p»), (74)

Table 1. Energy efficiency reduction due to quantization &, ,,/g,, (N, =4)

p+1
N, 0 5 10 50 100
5 0.797 0.740 0.684 0.318 0.053
10 0.807 0.792 0.778 0.664 0.536
20 0.810 0.806 0.804 0.785 0.762

30 0.810 0.808 0.807 0.794 0.776
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Table 2. Dependence of mode element characteristics on carrier spatial frequency (N, = 10, p+ /= 10)

N, 2 4 6 8 10 20
Srapt 0.374 0.777 0.868 0913 0.924 0.954
E1pt

82 0.758 0.218 0.118 0.070 0.058 0.028

where
py =6NZ[sinc(1/N,) — /1 —x]1—1, (75)
p2= 6N§[6jmx —2(1 —sinc(1/N,)] — 1. (76)

The confinement of the mode width to about 8,/p + 0.5 x g,/1+ 0.5 due to the dimensions of
the optical element gives rise to the estimate

p<ps, I<ps, p3=4(d/20)>—1/2. (77)

Letting =02, N,=67?=0.2, d=5um, and é =25 um we obtain p+1<2l at N, =26, and
p+1<2at N=10.

At greater spatial frequencies of the carrier v, i.e. at lower N,, the power efficiency €, , given
by Eq. (72) decreases, while the mean square criterion increases in value, which implies an
enhancement of quality of the complex amplitude distribution formed, and an increase in the
proportion of the respective intensity.

Thus, quantization dictates that the spatial frequency v should be minimized. In doing so one
should not overlook, however, that the lower bound of v is controlled by the conditions of
separability of the zeroth and first orders.
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APPENDIX
ESTIMATION OF MATRIX ELEMENTS OF PERTURBATION

We estimate the matrix elements H,,, and Q,,, given by (20) and (37), respectively, for a plane wave of illumination
of E(x)=const. For v =0, an estimate of H,,, has been furnished by Golub and Soifer [4]. We shall generalize on the
method devised in this paper.

The perturbations (19) and (18) due to quantization are piecewise functions having various parameters in different
resolution cells G,,. Recognizing that the pixel is small we may expand ,(x) into a Taylor series at x,,, and retain the
linear terms, viz.

‘/’pl(x) = ‘//pl(xnm) + (X - xnm)val(xnm)7 X€ Gnm' (Al)
Substituting (A1) into (18) and (19) yields
hpl(x) = l//pl(xnm){exp[" i2nv(x - xnm)] - 1} - (X - xnm)V‘I/plxnm’ X€ Gnm . (Az)

Now we come to estimating the matrix elements (20),

Hyppr = f h:l(x)‘lfp't'(x)dzx
G

=y RO i (X) d2X. (A3)

nm o Gom



38 M. A. GoLuB

Substituting (A1) and (A2) into (A3) and observing that

.[ (X —X,,)dx=0, (Ad)
Grm
f (x—x,) d2x=j (y—ym)? d?x = 84/12, (A5)
Grm Grm
f {exp[ +i2nv(x — X,,)] — 1} d*x = *[sinc(v,8) sinc(v,6) — 1], (A6)
Grm
j (X — X,m){exp[ +i27v(x — X,)] — 1} d?x = i62F(v,, v,, 9), (A7)
Grm
where sinc (t) = sin(xnt)/nt,
_ FO(VJU vy’ 6)
Flo by 01 <Fo(vy, Vo 6))’ “9

sinc(v,d) — cos(nv,d) .
— i

Fo(ve, vy, 0) = nc(v,9), (A9)

27y,

we get
2

. . . é
lep'l’ = 52 Z .ll:l(xnm)ll’y’l'(xnm)[snlc (vxé) SInC(Vyé) - 1] + ll/’:l(xnm)va’l’(xnm)F(Vx’ Vyx 6) - Vl/’:l(xnm)vd/p’l‘(xnm) E .
We approximate the integral sum by the integral and take into account the treatment of ¥ ,(x) at (Al). Then

H

P

2
e = —% L VYA (X)VY (%) 42X + [sinc (v,0) sinc (v,0) — 1188y + iF (v, vy, 8) J . YEX)VY,(x)d2x.  (A10)

To compute the matrix elements Q. given by (37) we use Eq. (18) at E(x) = const. On integration we have
Qoiprr = 8y — 6% L b XKWy (Xim) - (Al11)

On the other hand, the condition of orthonormality of mode functions on recognizing (A1), (A4) and (A5) becomes

6pp'éll’ = ‘[ l//:l(x)lpp’l'(x) dzx
G

=Y | ¥EW,(x)d>x

nmdJdG
54
=8 Y U hKumW - (Xm) +5 Y VA (X)) V e (Xim) - (A12)
Substituting (A12) in (A11) yields
Quipr = 0%/12) 3 VY3 (Xnm) V1 (X - (A13)

Approximating this sum by the integral leads us finally to
Quupr = (8°/12) j VY R(x)V o (x) d?x. (A14)
G

The formulae (A10) and (A14) provide estimates for the matrix elements of perturbations encountered in the main part of
this study.



